Q. What OS is required to run SWAN™?

SWAN™ Software supports Windows XP 32-bit and x64, Windows Vista 32-bit and x64, Windows Server 2003, Windows 7, Windows 8 and Windows 10 Operative Systems.

Q. Do I need an internet connection to run SWAN™?

SWAN™ does not require any internet connection and it has no access to internet while running at any time.

Q. Do I need any additional software to run SWAN™?

SWAN™ is a stand-alone software. To run SWAN™ you don’t need other software installed on your PC.

Q. Can I use CST Microwave Studio for the slot model extraction?

The Slot Model module can make use of CST Microwave Studio for the slot model extraction, through and automated procedure. SWAN™ can anyway perform analysis and design also without any additional full-wave simulation tool, as a very powerful e.m. engine has been included in the software which allows an extremely fast and accurate slot model extraction. For additional information please see SWAN™ Overview (PPT presentation, 9MB).

Q. Can I use ANSYS HFSS for the slot model extraction?

SWAN™ is not currently compatible with ANSYS HFSS. An extension to HFSS is planned for the near future.

Q. Can I design narrow-wall, edge, compoud or cross slot arrays?  

No. SWAN™ is dedicated to the design and analysis of arrays of longitudinal slots cut on the broad wall of rectangular waveguides.

Q. What is the limit for the number of elements for a planar array?  

There is no limit to the number of slots. SWAN™ has been already succesfully tested for array with 15K -20K slots with no problems.

Q. Are both internal and external mutual coupling terms taken into account? 

Yes, both internal and external mutual coupling terms are included. You can account for all couplings or you can window the mutual coupling terms around each considered element with a user-defined window size (for extremely large array this may speed up the calculation, though the software is extremely fast and usually this is not a real issue).

Q. Are both resonant and travelling wave arrays possible?

Yes. Both types of arrays can be deisgned in SWAN™.

Q. Are feeding waveguides (series excitation) included?

Yes, SWAN™ automatically designs (if required) also the first layer of the BFN, made of multi-section feeding waveguides with inclined slots.

Q. Is end-feeding possible? 

Yes. Both radiating waveguides and feeding waveguides can be end-fed.

Q. Does SWAN include pattern optimisation algorithms? If yes, which ones?

Yes. Two algorithms are included: Projection Method (also known as Intersection Method) and Orchard Method. Both methods are very powerful and always converge to the solution in extremely short time. You can impose excitation constraints (amplitude/phase) and provide upper and lower masks for the optimization. More details can be found in SWAN™ Ver. 2016 Complex Slot Excitation Feature Description (PDF file, 1 MB).

Q. Can the slot excitations be entered (manually or by a file) for an array synthesis?

Yes. You can provide your pre-calculated excitations (aplitude and phase) and SWAN™ will automatically sythesize the array geometry producing those excitations on the aperture.

Q. Are edge or any diffraction effects included in the software?

Yes. Edge diffraction effects on matching are included.

Q. Is there any sensitivity tool included in the code? Is it possible to evaluate the effects of manufacturing errors on the pattern and on the matching?

Yes. Montecarlo analysis is implemented in the software, which allows you to evaluate the separate or combined effects of manufacturing tolerance (random errors) and systematic errors on virtually any dimension of the antenna, and statistic results are provided. Analysis is performed at single frequency.

Comments are closed